Time Series 15

[Time-series 논문 리뷰] Unsupervised Time Series Outlier Detection with Diversity-Driven Convolutional Ensembles(PVLDB, 2022)

Abstract기존 연구 한계정확성, 효율성 측면에서 개선의 여지 O제안: 다양성 중심의 convolution ensemble정확성 향상: 시계열의 시간적 의존성을 포착할 수 있는 컨볼루션 시퀀스 대 시퀀스 오토인코더를 기반으로 한 다수의 기본 이상치 탐지 모델을 사용기본 모델들 사이의 다양성을 유지하여 앙상블의 정확성을 향상시키는 것을 목표효율성 향상: 훈련 도중 높은 수준의 병렬 처리, 한 기본 모델에서 다른 모델로 일부 모델 매개변수를 전송할 수 있어 훈련 시간을 줄임

[Time-series 논문 리뷰] When Model Meets New Normals: Test-time Adaptation for Unsupervised Time-series Anomaly Detection(AAAI, 2024)

0. Abstract시계열 이상 감지관측치의 시퀀스로부터 정상성을 학습하여 이상한 시간 단계를 탐지하는 문제를 다룸정상성시간이 지남에 따라 발전하여, 훈련 데이터와 테스트 데이터 사이의 분포 변화로 인해 정상성의 분포가 변할 수 있는 "새로운 정상 문제"를 야기⇒ 비지도 시계열 이상 감지 연구에서 새로운 정상 문제의 유병률을 강조제안점trend 추정 중에 새로운 정상성을 학습하기 위한 self-supervised 접근 방식을 기반으로 한 단순하지만 효과적인 테스트 시간 적응 전략을 제안1. Introduction[1] 비지도 시계열 이상 감지 모델비지도 시계열 이상 감지 모델사용 가능한 훈련 데이터셋에서 정상 패턴을 학습하는 것에 중점정상성 개념; 시간이 지남..

[Time-series 논문 리뷰] ANOMALY TRANSFORMER: TIME SERIES ANOMALY DETECTION WITH ASSOCIATION DISCREPANCY(ICLR, 2022)

0. Abstract시계열 비지도 이상 탐지기존 방법들(둘다 잘 안됨) pointwise representation, pairwise association(transformer) 통합모델링: pointwise representation+pairwise association각 timepoint의 self attention weight분포 → 전체 series와의 풍부한 연관성 내포가능이 연구에서의 문제 정의이상이 드물기에, anomaly point로부터 전체 series에 대한 중요한 연관성 구축 어려움따라서 전체보단, 주로 인접한 time point들과 연관성 집중될 것 (=인접 집중 편향)(이 연구에서,,) 정상과 이상점들 사이의 구별가능한 연관성 기준 내포**(=연광..

[Time-series 논문 리뷰] Large Language Models Are Zero-Shot Time Series Forecasters(NeurIPS, 2023)

공식 코드 https://github.com/ngruver/llmtime GitHub - ngruver/llmtime Contribute to ngruver/llmtime development by creating an account on GitHub. github.com 0. Abstract LLM + 시계열 성공이유 multimodal distributions를 표현할 수 있는 능력 단순성과 반복에 대한 편향이 결합되어 있기 때문 이는 많은 시계열에서 두드러지는 특징들(=반복되는 계절적 추세와 일치) LLM + 시계열 사용 이점 LLM들이 비수치적 텍스트를 통해 보정 없이 결측 데이터를 자연스럽게 처리가능 텍스트 측면 정보를 수용하며, 예측을 설명하는 데 도움이 되는 질문에 답할 수 있음 1. Int..