방법론의 목적 1) 시계열 데이터의 복잡성과 해석의 어려움시계열 데이터의 특성:다차원(multivariate) 데이터: 여러 센서 또는 관찰 데이터가 시간에 따라 변동.시간 패턴: 데이터가 시간적으로 연속적이면서 특정 구간에서 중요한 정보가 나타남.기존 설명 기법:이미지나 텍스트 데이터에 잘 작동하는 설명 기법을 시계열 데이터에 바로 적용하기 어려움.시계열 데이터의 복잡한 시간적 패턴과 연관성을 충분히 반영하지 못함.전역적 접근: 샘플 간 이질성을 반영하지 못함ContraLSP의 필요성:복잡한 시간적 특징을 설명할 수 있는 전용 모델 필요.중요한 시간 구간과 관찰 값을 효과적으로 식별하는 능력 요구.2) 기존 XAI 기법의 한계기존 기법(대표: Saliency Map, Shapley Value, LIME..