0. Abstract트랜스포머 한계점joint distribution으로 시간에 따라 변하는 비정상적인 실세계 데이터에서 그 성능이 크게 저하이전 연구 동향예측 가능성 개선 위해, 원본 series의 비정상성 완화하는 stationarization 채택But, 본질적인 비정상성을 잃은 정규화된 series는 실세계의 갑작스러운 사건을 예측하는 데 대처 어려움⇒ ‘과도한 정규화’: 트랜스포머가 다양한 series에 대해 구별할 수 없는 시간적 attention생성하여, 깊은 모델의 예측력 저해⇒ series의 예측 가능성과 모델 능력 사이의 딜레마를 해결하기 위해, 우리는 series stationarization와 non-stationary attention라는 두 개의 상호 의존..