2023 딥러닝/Time-series 논문 리뷰 2

[Time-series 논문 리뷰] Forecasting with Sparse but Informative Variables: A Case Study in Predicting Blood Glucose (AAAI, 2023)

1. Introduction SIV(희소하지만 정보를 제공)의 효과적 활용 위해, 이 논문의 독자적인 접근방식이 rMSE면에서 기준선 접근방식보다 뛰어남 SIV가 손상되면 논문의 독자적 접근방식도 성능 낮아질것 결론*) 논문의 접근방식은 예측에서 SIV를 더 효과적 사용가능 내재+외재 = 예측정확도 향상 But 혈당과 같은 생리학적 변수의 예측에서는 내재+외재에서 예측 정확도가 향상되는 경우 없을수있음 보조신호와 대상 신호간의 비제로값이 상대적 불일치 때문 보조신호(외재)가 대상 신호(내재)에 영향 미치는데 매우 희소( 희소하지만 정보를 제공하는 변수(SIV) =⇒ 희소성에도 불구하고 SIV를 활용하여 전반적인 예측 개선 SIV문제 언제 발생) 부가변수가 시간에 따라 대상 변수의 크기를 증가시키거나 감소..

[Time-series 논문 리뷰] Are Transformers Effective for Time Series Forecasting? (AAAI, 2023) (NLinear, DLinear)

0. Abstract LTSF해결위한 Transformer based 해결책의 급증 Transformer는 의미론적인 상관관계를 잘 해결함 순서가 있는 연속적인 point에서 시간적 관계추출해야됨 Transformer에서 encoding, token이용하면서 정보를 순서대로 놓아도, self attention매커니즘의 순서가 변하지 않는 것은 일시적 정보손실을 반드시 낳는다* LTSF-Linear가 기존의 정교한 Transformer-based LTSF 를 넘어서 좋은 성능 보여줌 1. Introduction 시계열 시계열 문제는 data기반 세계에 만연함 시계열 문제 해결 변천사 : 머신러닝 → 딥러닝 Transformer Transformer 장점: 순서기반 모델, 병렬적이지 않은 해결, 다양한 적용..