Sleep Quality 2

[논문 리뷰] Sleep Quality Prediction From Wearable Data Using Deep Learning

Sleep Quality Definitions수면 효율성(sleep efficiency)수면의 질을 측정하기 위해 수면 효율성(sleep efficiency)을 결정했습니다(그림 2 참조). 이는 **총 수면 시간(분)과 침대에 있는 총 시간(분)**의 비율입니다. 수면 효율성 점수가 85% 이상인 사람들은 양질의 수면을 취한 것으로 간주되며, 점수가 85% 미만인 사람들은 수면의 질이 낮은 것으로 간주됩니다. **침대에 있는 총 시간(가속도계 센서(macc))**은 개인이 잠을 자는 시간과 잠들기까지 걸리는 시간(즉, 잠복기)을 포함한 시간입니다. 총 수면 시간은 개인이 잠을 자는 시간에서 깨어난 시간을 뺀 시간을 나타냅니다.이는 수면 시작 후 깨어난 시간(WASO)을 수면 기간의 길이에서 빼서 계산합..

[논문 리뷰] Assessing Sleep Quality Using Mobile EMAs: Opportunities, Practical Consideration, and Challenges

Abstract일상적인 수면 질을 평가하기 위해 EMAs 데이터를 포함하는 지표를 제안복잡한 생활 방식 맥락을 정량적으로 포함우리는 스마트폰을 사용하여 4주간의 데이터 수집 실험을 통해 실제 생활 데이터를 수집.우리는 자가 보고 데이터를 사용하여 지리적, 사회적 습관, 사회적 조건, 활동 수준 및 감정 상태를 반영하는 일일 지표를 생성하는 방법을 개발우리는 기존의 수면 설문지에서 EMAs를 사용하여 특징을 구성하는 지표를 보완할 수 있는지 여부를 평가분석 목표인식된 수면의 질을 설명하는 다섯 가지 수면 질 지표로 구성분석 결과일일 지표와 수면 설문지를 모두 사용한 특징이 수면 질 예측에 더 나은 결과를 초래모바일 기기와 EMAs를 통해 복잡한 인간 행동을 식별하는 지표를 생성할 가능성사용자 친화적인 데이..