문제 설정- DACAD는 라벨이 없는 타겟 시계열 데이터셋 T에서 라벨이 있는 소스 데이터셋 S를 사용하여 이상탐지하는 모델- 소스 데이터는 정상과 이상 라벨O, 타겟 데이터는 라벨X Anomaly Injection- 타겟 데이터에 라벨이 없기에, DACAD는 이상 주입 방법으로 합성된 이상을 만들어냄- 이 과정에서 소스 데이터의 정상 샘플 $S_{norm}$과 타겟 데이터 T에 합성 이상을 추가하여 새로운 샘플 집합 $S_{inj}$와 $T_{inj}$를 생성함- 모델이 다양한 유형의 이상 학습하는데에 도움됨 TCN- TCN을 통해 시계열 window의 주요 특징 추출- 변환된 특징 공간에서 4가지로 나눌 수 있음- $\varphi^R(S)$ : 소스 window의 representation- $\va..