anomaly detection 12

[Manufacturing 논문 리뷰] Squeezed convolutional variational AutoEncoder for unsupervised anomaly detection in edge device industrial Internet of Things(ICCIT, 2018)

Abstract SCVAE 시계열 이상탐지위함 압축된 컨볼루션 VAE UCI dataset의 레이블이 붙은 시계열 데이터에 적용됨 SqueezeNet의 Fire모듈을 적용하기 전후의 모델 비교 Introduction 제조 공정에서는 불량과 고장에 대한 레이블이 없음 ⇒ 예측 정비에 앞서 공정의 행동 패턴에 대한 진단이 필요 레이블이 없을때) 비정상적인 행동 패턴을 이상 현상으로 가정 (센서 데이터가 시계열이기 때문에 시계열 데이터의 특성을 반영하는 모델을 찾는 것이 중요) 기존 연구된 모델들 비지도 이상 탐지를 위한 컨볼루션 신경망(CNN) 기반 변이형 오토인코더(VAE) 모델 기존) 클라우드 기반 접근방식 → 현재) 엣지기반 접근방식 일부 컴퓨팅 부하를 에지 장치로 옮겨 실시간 추론을 가능 데이터 통신..

[서베이 정리] Anomaly Detection for IoT Time-Series Data: A Survey

0. Abstract IoT 데이터에 이상 감지 기술을 적용할 때 마주칠 수 있는 도전에 대한 배경을 제공하며, 문헌에서 가져온 IoT 이상 감지의 응용 예를 들어 설명합니다. 우리는 IoT에만 국한되지 않고 다양한 분야에서 개발된 다양한 접근 방법을 논의합니다 이상 감지 분야에서 현재 직면하고 있는 도전을 요약하고, 향후 잠재적인 연구 기회를 식별하는 데 중점 I. Introduction 현재 많은 이상 감지 방법은 이러한 시스템을 활성화하고 생성된 데이터를 추출하고 해석하는 데 상당한 인간 상호작용을 필요로 합니다. 전문가가 시스템 상태를 나타내는 작은 데이터 부분을 보고 수동으로 관심 있는 추세와 패턴을 식별하는 것이 상대적으로 쉽습니다. 하지만 시스템이 작더라도 이러한 추세를 수동으로 식별하기 어..