LLM 5

[Time-series 논문 리뷰] Large language models can be zero-shot anomaly detectors for time series? (DSAA 2024)

본 논문에서는 LLM을 활용하여 시계열 데이터에서 이상 탐지하는 방법을 제안하는데, 이를 위해 SIGLLM이라는 프레임워크 개발함. SIGLLM은 시계열 데이터를 text형식으로 변환해 LLM에 입력하고, 이를 기반으로 2가지 접근법을 사용하여 이상을 탐지함. (PROMPTER, DETECTOR) 1. 시계열 데이터 변환 과정 (LLMTIME과 유사)시계열 데이터를 LLM이 처리할 수 있도록 하기 위해 몇가지 전처리 과정을 거침.1) 스케일링(Scaling)- 데이터의 최솟값을 기준으로 값을 이동하여 비음수로 변환함.- 예를 들어, $X=(x_1, x_2, ... , x_T)$가 주어지면, 각 데이터 포인트에 대해 $x_{t}^{'}=x_t-min(X)$로 변환해 음수를 제거하고 데이터의 범위 조절 2)..

[Time-series 논문 리뷰] LSTPrompt: Large Language Models as Zero-Shot Time Series Forecastersby Long-Short-Term Prompting

방법론의 목적 기존의 제로샷 TSF 프롬프트 전략은 TS 데이터를 숫자 문자열로 표현하고 TSF 작업을 텍스트 기반의 다음 토큰 예측으로 간주그러나 이러한 전략은 동적 TS 데이터에 내재된 정교한 예측 메커니즘의 필요성을 간과함.명확한 지침이 없으면 기존 전략은 높은 불확실성을 가진 부정확한 예측을 초래(=단순히 나열된 숫자만 가지고 다음을 예측하는 것은 예측에 필요한 다양한 요인들 고려안한것)  주목해야할 점 Chain-of-Thought, Time Breath  방법론 GPT-3.5 TurboGPT-4 사용 (best)  Time Decomposition1) Chain-of-Thought목적: TSF 작업을 체계적인 추론을 위함방법: 특정 dataset으로 task prompt → task를 장단기 ..

[Time-series 논문 리뷰] Large Language Models Are Zero-Shot Time Series Forecasters (NeurIPS 2023)

방법론의 목적LLM을 backbone으로 활용하여 zero-shot 시계열 예측하기 위함  주목해야할 점LLM에 들어가기 위한 전처리 방법들   방법론 개념도 설명데이터예시[150, 153, 157, 155, 160, ...]인코딩:시계열 데이터를 LLM이 이해할 수 있는 형식으로 변환'150, 153, 157, 155, 160' → "1 5 0 , 1 5 3 , 1 5 7 , 1 5 5 , 1 6 0"모델 입력:LLM에 변환된 문자열을 입력모델은 이 입력을 기반으로 다음에 나올 값을 예측하는 '토큰' 예측 문제를 해결"1 5 0 , 1 5 3 , 1 5 7 , 1 5 5 , 1 6 0"을 입력받고, 그 다음에 나올 값을 예측\예측 샘플링:LLM은 여러 번의 샘플링을 통해 다양한 예측 결과를 생성[162..

[서베이 정리] Large Language Models for Data Annotation: A Survey

PreliminariesScenario: unsupervised learningTechnique 방법: IOP, ICL, CoT, IT, AT 등 LLM-Based Data AnnotationManually Engineered Prompts(수동으로 설계된 프롬프트)  제로샷 (Zero-Shot)개념: 제로샷 학습은 LLM에게 예시 없이 작업을 수행하도록 요청하는 방법입니다. 즉, LLM이 이전에 본 적이 없는 새로운 작업에 대해 바로 응답을 생성해야 합니다.사용법:프롬프트 생성: 특정 작업에 대한 명령어를 포함한 프롬프트를 작성합니다.출력 획득: LLM에게 프롬프트를 제공하고 응답을 받습니다예시: Prompt: "Translate the following English sentence to French..

[Time-series 논문 리뷰] Large Language Models Are Zero-Shot Time Series Forecasters(NeurIPS, 2023)

공식 코드 https://github.com/ngruver/llmtime GitHub - ngruver/llmtime Contribute to ngruver/llmtime development by creating an account on GitHub. github.com 0. Abstract LLM + 시계열 성공이유 multimodal distributions를 표현할 수 있는 능력 단순성과 반복에 대한 편향이 결합되어 있기 때문 이는 많은 시계열에서 두드러지는 특징들(=반복되는 계절적 추세와 일치) LLM + 시계열 사용 이점 LLM들이 비수치적 텍스트를 통해 보정 없이 결측 데이터를 자연스럽게 처리가능 텍스트 측면 정보를 수용하며, 예측을 설명하는 데 도움이 되는 질문에 답할 수 있음 1. Int..