Abstract이전 UDA 방법: 지역x 전역 초점제안모델: SLARDA자기감독 학습 모듈 → 예측에 활용하여 source 특성의 전이성 개선도메인 정렬 → 도메인 정렬 동안 소스 및 타겟 특성의 시간 의존성을 통합하는 새로운 자기회귀 도메인 적응 기술을 제안confidence pseudo labeling(앙상블 teacher모델) → target domain에서 class별 분포 정렬IntroductionDL 기반 접근 방식은 항상 훈련 데이터(즉, 소스 도메인)와 테스트 데이터(즉, 타겟 도메인)가 동일한 분포에서 추출되었다고 가정비전 UDA: MMD, GAN 방식 많이 사용시계열 적용의 어려움동적 특성 포착 어려움기존 pretrain모델은 imageNet기반, 시계열에 부적합시계열 기존 연구 흐름:..