[Manufacturing 논문 리뷰] Lightweight Long Short-Term Memory VariationalAuto-Encoder for Multivariate Time Series Anomaly Detectionin Industrial Control Systems
LSTM-VAE관련 3. Methodology 첫 번째 단계인 입력 단계에서는 데이터 집합을 전처리합니다. 우리의 방법론은 특징 선택, 특징 정규화 및 창 추출이라는 여러 전처리 단계를 포함합니다. 특징 선택은 입력 데이터 집합의 개별 특징에 대해 수행됩니다. 특징은 이상 탐지 작업에 동일하게 기여하지 않을 수 있습니다. 특징은 중복될 수 있으며 (즉, 다른 특징보다 이상 샘플과 이상이 없는 샘플을 잘 구분하지 못할 수 있음) 훈련 집합에서의 특징 값 분포가 테스트 집합에서의 특징 값 분포와 크게 다를 수 있습니다. 특징 선택은 이상 탐지기의 성능에 큰 영향을 미치므로 중요합니다. 특징 정규화 단계에서는 개별 특징 값이 정규화됩니다. 특징 정규화는 이상 탐지 성능에 큰 영향을 미치며, 기계 학습 알고리즘..