- 2024.05.20 기준 311회 인용 - Transformer구조와 Adversarial training을 다변량 시계열 데이터에 접목시킨 연구 ∎ Contribution - Transformer 구조를 통해 기존 다변량 시계열 데이터에서의 anomaly detection 개선 - 전체적인 시점정보와 지역적 시점정보 모두 반영하여 시계열 데이터가 지닌 장단기 특징을 반영 - 두 개의 decoder를 지닌 구조로 Adversarial training을 통해 안정적인 학습 및 불량 탐지 효과 개선하여, 정상에 대해 좀 더 강건하고 일반화된 특징을 적절히 학습 1) Architecture - 1개의 Encoder와 2개의 Decoder로 구성 : Encoder는 기존의 Transformer구조와 동일..