ABSTRACT시계열 이상 감지의 중요성: 웹 시스템은 실시간으로 이상을 감시하고 식별하기 위해 시계열 데이터에 의존합니다. 이는 시스템의 진단과 복구 절차를 시작하는 데 중요한 역할을 합니다.VAE의 인기와 한계: 변이형 오토인코더(VAE)는 우수한 노이즈 제거 능력으로 인해 이상 감지 분야에서 인기를 얻었습니다. 그러나 VAE 기반 방법은 장기간의 이질적 패턴과 단기간 trend를 동시에 포착하는 데 어려움을 겪습니다.FCVAE의 제안: 이러한 도전을 극복하기 위해, 단변량 시계열 데이터를 위한 주파수 강화 조건부 변이형 오토인코더(FCVAE)라는 새로운 비지도 학습 이상 감지 방법을 제안합니다.혁신적 접근 방식: FCVAE는 조건부 변이형 오토인코더의 조건에 전역 및 지역 주파수 특성을 동..